Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.070
1.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Article En | MEDLINE | ID: mdl-38721924

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


AMP-Activated Protein Kinases , Caffeic Acids , Peritoneal Dialysis , Peritoneal Fibrosis , Phenylethyl Alcohol , Rats, Sprague-Dawley , Sirtuin 1 , Animals , Peritoneal Fibrosis/etiology , Peritoneal Fibrosis/metabolism , Peritoneal Fibrosis/prevention & control , Sirtuin 1/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Rats , Male , AMP-Activated Protein Kinases/metabolism , Peritoneal Dialysis/adverse effects , Mitochondria/drug effects , Mitochondria/metabolism , Disease Models, Animal , Signal Transduction/drug effects , Peritoneum/pathology , Peritoneum/drug effects , Peritoneum/metabolism , Homeostasis/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Transforming Growth Factor beta1/metabolism , Membrane Potential, Mitochondrial/drug effects , Dialysis Solutions
2.
Int J Biol Macromol ; 267(Pt 1): 131166, 2024 May.
Article En | MEDLINE | ID: mdl-38582464

Here, the simultaneous effect of chemo- and photothermal therapy against epidermoid carcinoma (EC) was investigated. A novel hydrogel, termed bionanogel (BNG), was designed using psyllium mucilage polysaccharide and bacterial gellan gum, incorporated with nanocomplex carrying caffeic acid (CA) and IR-820, and further characterized. The dual effect of BNG and 808 nm laser (BNG + L) on EC was investigated. Staining and scratch assays were performed to analyze their therapeutic effect on EC. In vivo evaluations of BNG + L in xenograft models were performed. Rapid transition, limited swelling, degradability and high tensile strength indicated BNG stability and sustained drug release. Irradiation with 808 nm laser light at 1.25 W /cm2 for 4 min resulted in a temperature increase of 53 °C and facilitated cell ablation. The in vitro studies showed that BNG + L suppressed cancer progression via a late apoptotic effect. The in vivo study showed that the slow release of CA from BNG + L significantly attenuated EC with low mitotic index and downregulation of proteins involved in cancer proliferation such as EGFR, AKT, PI3K, ERK, mTOR and HIF-1α. Thus, BNG could be a novel medium for targeted and controlled drug delivery for the treatment of epidermoid cancer when triggered by NIR light.


Caffeic Acids , Carcinoma, Squamous Cell , Polysaccharides, Bacterial , Psyllium , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/administration & dosage , Animals , Humans , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Mice , Psyllium/chemistry , Psyllium/pharmacology , Cell Line, Tumor , Polysaccharides/chemistry , Polysaccharides/pharmacology , Hydrogels/chemistry , Xenograft Model Antitumor Assays , Drug Delivery Systems
3.
Int J Food Microbiol ; 417: 110710, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38643598

Postharvest loss caused by a range of pathogens necessitates exploring novel antifungal compounds that are safe and efficient in managing the pathogens. This study evaluated the antifungal activity of ethyl ferulate (EF) and explored its mechanisms of action against Alternaria alternata, Aspergillus niger, Botrytis cinerea, Penicillium expansum, Penicillium digitatum, Geotrichum candidum and evaluated its potential to inhibit postharvest decay. The results demonstrated that EF exerts potent antifungal activity against a wide board of postharvest pathogens. Results also revealed that its antifungal mechanism is multifaceted: EF may be involved in binding to and disturbing the integrity of the fungal plasma membrane, causing leakage of intracellular content and losing normal morphology and ultrastructure. EF also induced oxidative stress in the pathogen, causing membrane lipid peroxidation and malondialdehyde accumulation. EF inhibited the critical gene expression of the pathogen, affecting its metabolic regulation, antioxidant metabolism, and cell wall degrading enzymes. EF exhibited antifungal inhibitory activity when applied directly into peel wounds or after incorporation with chitosan coating. Due to its wide board and efficient antifungal activity, EF has the potential to provide a promising alternative to manage postharvest decay.


Antifungal Agents , Botrytis , Caffeic Acids , Penicillium , Penicillium/drug effects , Penicillium/metabolism , Antifungal Agents/pharmacology , Botrytis/drug effects , Caffeic Acids/pharmacology , Alternaria/drug effects , Aspergillus niger/drug effects , Food Preservation/methods , Geotrichum/drug effects , Fungi/drug effects , Food Microbiology , Fruit/microbiology , Oxidative Stress/drug effects
4.
Shock ; 61(5): 748-757, 2024 May 01.
Article En | MEDLINE | ID: mdl-38662612

ABSTRACT: Cardiac fibrosis, characterized by excessive collagen accumulation in heart tissues, poses a significant clinical challenge in various heart diseases and complications. Although salvianolic acid A (Sal A) from Danshen ( Salvia miltiorrhiza ) has shown promise in the treatment of ischemic heart disease, myocardial infarction, and atherosclerosis, its effects on cardiac fibrosis remain unexplored. Our study investigated the efficacy of Sal A in reducing cardiac fibrosis and elucidated its underlying molecular mechanisms. We observed that Sal A demonstrated significant cardioprotective effects against Angiotensin II (Ang II)-induced cardiac remodeling and fibrosis, showing a dose-dependent reduction in fibrosis in mice and suppression of cardiac fibroblast proliferation and fibrotic protein expression in vitro . RNA sequencing revealed that Sal A counteracted Ang II-induced upregulation of Txnip, and subsequent experiments indicated that it acts through the inflammasome and ROS pathways. These findings establish the antifibrotic effects of Sal A, notably attenuated by Txnip overexpression, and highlight its significant role in modulating inflammation and oxidative stress pathways. This underscores the importance of further research on Sal A and similar compounds, especially regarding their effects on inflammation and oxidative stress, which are key factors in various cardiovascular diseases.


Angiotensin II , Carrier Proteins , Fibrosis , Lactates , Signal Transduction , Thioredoxins , Animals , Mice , Signal Transduction/drug effects , Carrier Proteins/metabolism , Male , Lactates/pharmacology , Lactates/therapeutic use , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Cell Cycle Proteins/metabolism
5.
Int Immunopharmacol ; 132: 111971, 2024 May 10.
Article En | MEDLINE | ID: mdl-38565040

DNA damage resulting from UV irradiation on the skin has been extensively documented in numerous studies. In our prior investigations, we demonstrated that UVB-induced DNA breakage from keratinocytes can activate the cGAS-STING pathway in macrophages. The cGAS-STING signaling pathway serves as the principal effector for detecting and responding to abnormal double-stranded DNA in the cytoplasm. Expanding on our previous findings, we have further validated that STING knockout significantly diminishes UVB-induced skin damage, emphasizing the critical role of cGAS-STING activation in this context. Salvianolic acid A, a principal active constituent of Salvia miltiorrhiza Burge, has been extensively studied for its therapeutic effects in conditions such as coronary heart disease, angina pectoris, and diabetic peripheral neuropathy. However, its effect on cGAS-STING pathway and its ability to alleviate skin damage have not been previously reported. In a co-culture system, supernatant from UVB-treated keratinocytes induced IRF3 activation in macrophages, and this activation was inhibited by salvianolic acid A. Our investigation, employing photodamage and photoaging models, establishes that salvianolic acid A effectively mitigates UV-induced epidermal thickening and collagen degeneration. Treatment with salvianolic acid A significantly reduced skin damage, epidermal thickness increase, and keratinocyte hyperproliferation compared to the untreated photo-damage and photoaging model groups. In summary, salvianolic acid A emerges as a promising candidate for preventing UV-induced skin damage by inhibiting cGAS-STING activation. This research enhances our understanding of the intricate mechanisms underlying skin photodamage and provides a potential avenue for the development of therapeutic interventions.


Caffeic Acids , Keratinocytes , Lactates , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Skin , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Signal Transduction/drug effects , Keratinocytes/drug effects , Keratinocytes/radiation effects , Skin/drug effects , Skin/pathology , Skin/radiation effects , Nucleotidyltransferases/metabolism , Caffeic Acids/pharmacology , Humans , Mice , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred C57BL , Skin Aging/drug effects , Skin Aging/radiation effects , DNA Damage/drug effects , Interferon Regulatory Factor-3/metabolism , Female , RAW 264.7 Cells
6.
Nutrients ; 16(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38674835

Inflammatory bowel disease (IBD) has attracted much attention worldwide due to its prevalence. In this study, the effect of a solid-in-oil-in-water (S/O/W) emulsion with Caffeic acid phenethyl ester (CAPE, a polyphenolic active ingredient in propolis) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice was evaluated. The results showed that CAPE-emulsion could significantly alleviate DSS-induced colitis through its effects on colon length, reduction in the disease activity index (DAI), and colon histopathology. The results of ELISA and Western blot analysis showed that CAPE-emulsion can down-regulate the excessive inflammatory cytokines in colon tissue and inhibit the expression of p65 in the NF-κB pathway. Furthermore, CAPE-emulsion promoted short-chain fatty acids production in DSS-induced colitis mice. High-throughput sequencing results revealed that CAPE-emulsion regulates the imbalance of gut microbiota by enhancing diversity, restoring the abundance of beneficial bacteria (such as Odoribacter), and suppressing the abundance of harmful bacteria (such as Afipia, Sphingomonas). The results of fecal metabolome showed that CAPE-emulsion restored the DSS-induced metabolic disorder by affecting metabolic pathways related to inflammation and cholesterol metabolism. These research results provide a scientific basis for the use of CPAE-emulsions for the development of functional foods for treating IBD.


Caffeic Acids , Colitis , Dextran Sulfate , Emulsions , Feces , Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-kappa B , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Animals , Gastrointestinal Microbiome/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Caffeic Acids/pharmacology , Phenylethyl Alcohol/pharmacology , Feces/microbiology , Feces/chemistry , NF-kappa B/metabolism , Mice , Metabolome/drug effects , Male , Disease Models, Animal , Signal Transduction/drug effects , Colon/drug effects , Colon/metabolism , Colon/microbiology , Cytokines/metabolism
7.
Biomed Pharmacother ; 174: 116556, 2024 May.
Article En | MEDLINE | ID: mdl-38636398

Skeletal muscle atrophy is a common complication of chronic kidney disease (CKD) that affects the quality of life and prognosis of patients. We aimed to investigate the effects and mechanisms of caffeic acid (CA), a natural phenolic compound, on skeletal muscle atrophy in CKD rats. Male Sprague-Dawley rats underwent 5/6 nephrectomy (NPM) and were treated with CA (20, 40, or 80 mg/kg/day) for 10 weeks. The body and muscle weights, renal function, hemoglobin, and albumin were measured. The histological, molecular, and biochemical changes in skeletal muscles were evaluated using hematoxylin-eosin staining, quantitative real-time PCR, malondialdehyde/catalase/superoxide dismutase/glutathione level detection, and enzyme-linked immunosorbent assay. Western blotting and network pharmacology were applied to identify the potential targets and pathways of CA, CKD, and muscle atrophy. The results showed that CA significantly improved NPM-induced muscle-catabolic effects, reduced the expression of muscle atrophy-related proteins (muscle atrophy F-box and muscle RING finger 1) and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-alpha, and IL-1ß), and attenuated muscle oxidative stress. Network pharmacology revealed that CA modulated the response to oxidative stress and nuclear factor kappa B (NF-κB) signaling pathway and that Toll-like receptor 4 (TLR4) was a key target. In vivo experiment confirmed that CA inhibited the TLR4/myeloid differentiation primary response 88 (MYD88)/NF-kB signaling pathway, reduced muscle iron levels, and restored glutathione peroxidase 4 activity, thereby alleviating ferroptosis and inflammation in skeletal muscles. Thus, CA might be a promising therapeutic agent for preventing and treating skeletal muscle atrophy in CKD by modulating the TLR4/MYD88/NF-κB pathway and ferroptosis.


Caffeic Acids , Muscular Atrophy , Myeloid Differentiation Factor 88 , Renal Insufficiency, Chronic , Signal Transduction , Animals , Male , Rats , Caffeic Acids/pharmacology , Cytokines/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/pathology , Muscular Atrophy/etiology , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Myeloid Differentiation Factor 88/metabolism , Nephrectomy/adverse effects , NF-kappa B/metabolism , Oxidative Stress/drug effects , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
8.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38528569

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Caffeic Acids , Mitochondrial Diseases , Phenylethyl Alcohol , Spinal Cord Injuries , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Methylprednisolone/pharmacology , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/metabolism , Molecular Docking Simulation , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Phenylethyl Alcohol/analogs & derivatives , Reactive Oxygen Species/metabolism , Signal Transduction , Sirtuin 1/metabolism , Spinal Cord , Spinal Cord Injuries/drug therapy , Dynamins/drug effects
9.
Nutrients ; 16(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38474755

The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.


Cardiovascular Diseases , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Propolis , Humans , Lipopolysaccharides/pharmacology , Interleukin-10 , Interferon-alpha , Propolis/pharmacology , Cardiotonic Agents , Interleukin-6 , Phenylethyl Alcohol/pharmacology , Ethanol , Caffeic Acids/pharmacology , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology
10.
Phytomedicine ; 128: 155415, 2024 Jun.
Article En | MEDLINE | ID: mdl-38503151

BACKGROUND: Chichoric acid (CA) is a major active ingredient found in chicory and Echinacea. As a derivative of caffeic acid, it has various pharmacological effects. PURPOSE: Due to the unclear etiology and disease mechanisms, effective treatment methods for ulcerative colitis (UC) are currently lacking. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and dextran sulfate sodium (DSS)-induced mouse UC models. METHODS: Folate-chicory acid liposome was prepared using the double emulsion ultrasonic method with the aim of targeting folate receptors specifically expressed on macrophages. The study investigated the therapeutic effects of the folate-chicory acid liposome on both LPS-induced macrophage inflammation models and DSS -induced mouse UC models. Furthermore, the effects of the liposomes on macrophage polarization and their underlying mechanisms in UC were explored. RESULTS: The average particle size of folate-chicory acid liposome was 120.4 ± 0.46 nm, with an encapsulation efficiency of 77.32 ± 3.19 %. The folate-chicory acid liposome could alleviate macrophage apoptosis induced by LPS, decrease the expression of inflammatory factors in macrophages, enhance the expression of anti-inflammatory factors, inhibit macrophage polarization towards the M1 phenotype, and mitigate cellular inflammation in vetro. In vivo test, folate-chicory acid liposome could attenuate clinical symptoms, increased colon length, reduced DAI scores, CMDI scores, and alleviated the severity of colonic histopathological damage in UC mice. Furthermore, it inhibited the polarization of macrophages towards the M1 phenotype in the colon and downregulated the TLR4/NF-κB signaling pathway, thereby ameliorating UC in mice. CONCLUSION: Folate-chicory acid liposome exhibited a uniform particle size distribution and high encapsulation efficiency. It effectively treated UC mice by inhibiting the polarization of macrophages towards the M1 phenotype in the colon and downregulating the TLR4/NF-κB signaling pathway.


Caffeic Acids , Colitis, Ulcerative , Folic Acid , Lipopolysaccharides , Liposomes , Macrophages , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Folic Acid/pharmacology , Folic Acid/chemistry , Folic Acid/analogs & derivatives , Toll-Like Receptor 4/metabolism , Mice , NF-kappa B/metabolism , Signal Transduction/drug effects , Macrophages/drug effects , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Male , RAW 264.7 Cells , Disease Models, Animal , Dextran Sulfate , Succinates/pharmacology , Succinates/chemistry , Mice, Inbred C57BL , Apoptosis/drug effects , Anti-Inflammatory Agents/pharmacology
11.
Infect Immun ; 92(5): e0008024, 2024 May 07.
Article En | MEDLINE | ID: mdl-38534100

Traditional folk treatments for the prevention and management of urinary tract infections (UTIs) and other infectious diseases often include plants and plant extracts that are rich in phenolic compounds. These have been ascribed a variety of activities, including inhibition of bacterial interactions with host cells. Here, we tested a panel of four well-studied phenolic compounds-caffeic acid phenethyl ester (CAPE), resveratrol, catechin, and epigallocatechin gallate-for the effects on host cell adherence and invasion by uropathogenic Escherichia coli (UPEC). These bacteria, which are the leading cause of UTIs, can bind and subsequently invade bladder epithelial cells via an actin-dependent process. Intracellular UPEC reservoirs within the bladder are often protected from antibiotics and host defenses and likely contribute to the development of chronic and recurrent infections. In cell culture-based assays, only resveratrol had a notable negative effect on UPEC adherence to bladder cells. However, both CAPE and resveratrol significantly inhibited UPEC entry into the host cells, coordinate with attenuated phosphorylation of the host actin regulator Focal Adhesion Kinase (FAK or PTK2) and marked increases in the numbers of focal adhesion structures. We further show that the intravesical delivery of resveratrol inhibits UPEC infiltration of the bladder mucosa in a murine UTI model and that resveratrol and CAPE can disrupt the ability of other invasive pathogens to enter host cells. Together, these results highlight the therapeutic potential of molecules like CAPE and resveratrol, which could be used to augment antibiotic treatments by restricting pathogen access to protective intracellular niches.IMPORTANCEUrinary tract infections (UTIs) are exceptionally common and increasingly difficult to treat due to the ongoing rise and spread of antibiotic-resistant pathogens. Furthermore, the primary cause of UTIs, uropathogenic Escherichia coli (UPEC), can avoid antibiotic exposure and many host defenses by invading the epithelial cells that line the bladder surface. Here, we identified two plant-derived phenolic compounds that disrupt activation of the host machinery needed for UPEC entry into bladder cells. One of these compounds, resveratrol, effectively inhibited UPEC invasion of the bladder mucosa in a mouse UTI model, and both phenolic compounds significantly reduced host cell entry by other invasive pathogens. These findings suggest that select phenolic compounds could be used to supplement existing antibacterial therapeutics by denying uropathogens shelter within host cells and tissues and help explain some of the benefits attributed to traditional plant-based medicines.


Bacterial Adhesion , Catechin/analogs & derivatives , Escherichia coli Infections , Phenols , Phenylethyl Alcohol/analogs & derivatives , Urinary Tract Infections , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/drug effects , Animals , Mice , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Phenols/pharmacology , Humans , Bacterial Adhesion/drug effects , Resveratrol/pharmacology , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Urinary Bladder/microbiology , Urinary Bladder/drug effects , Urinary Bladder/pathology , Plant Extracts/pharmacology , Female , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/antagonists & inhibitors , Cell Line , Catechin/pharmacology , Caffeic Acids/pharmacology
12.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article En | MEDLINE | ID: mdl-38397118

Chronic and excessive ultraviolet (UVA/UVB) irradiation exposure is known as a major contributor to premature skin aging, which leads to excessive reactive oxygen species generation, disturbed extracellular matrix homeostasis, DNA damage, and chronic inflammation. Sunscreen products are the major preventive option against UVR-induced photodamage, mostly counteracting the acute skin effects and only mildly counteracting accelerated aging. Therefore, novel anti-photoaging and photopreventive compounds are a subject of increased scientific interest. Our previous investigations revealed that the endemic plant Haberlea rhodopensis Friv. (HRE) activates the antioxidant defense through an NRF2-mediated mechanism in neutrophiles. In the present study, we aimed to investigate the photoprotective potential of HRE and two of its specialized compounds-the phenylethanoid glycosides myconoside (MYC) and calceolarioside E (CAL)-in UVA/UVB-stimulated human keratinocytes in an in vitro model of photoaging. The obtained data demonstrated that the application of HRE, MYC, and CAL significantly reduced intracellular ROS formation in UVR-exposed HaCaT cells. The NRF2/PGC-1α and TGF-1ß/Smad/Wnt signaling pathways were pointed out as having a critical role in the observed CAL- and MYC-induced photoprotective effect. Collectively, CAL is worth further evaluation as a potent natural NRF2 activator and a promising photoprotective agent that leads to the prevention of UVA/UVB-induced premature skin aging.


Caffeic Acids , Glucosides , Skin Aging , Skin Diseases , Humans , Caffeic Acids/pharmacology , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Skin/metabolism , Skin Diseases/metabolism , Ultraviolet Rays/adverse effects
13.
Cell Biochem Funct ; 42(2): e3942, 2024 Mar.
Article En | MEDLINE | ID: mdl-38379263

Colorectal cancer (CRC) is among the most prevalent gastrointestinal cancers of epithelial origin worldwide, with over 2 million cases detected every year. Emerging evidence suggests a significant increase in the levels of inflammatory and stress-related markers in patients with CRC, indicating that oxidative stress and lipid peroxidation may influence signalling cascades involved in the progression of the disease. However, the precise molecular and cellular basis underlying CRC and their modulations during bioactive compound exposure have not yet been deciphered. This study examines the effect of caffeic acid phenethyl ester (CAPE), a natural bioactive compound, in HT29 CRC cells grown under serum-supplemented and serum-deprived conditions. We found that CAPE inhibited cell cycle progression in the G2/M phase and induced apoptosis. Migration assay confirmed that CAPE repressed cancer invasiveness. Protein localisation by immunofluorescence microscopy and protein expression by western blot analysis reveal increased expressions of key inflammatory signalling mediators such as p38α, Jun N-terminal kinase and extracellular signal-regulated kinase (ERK) proteins. Molecular docking data demonstrates that CAPE shows a higher docking score of -5.35 versus -4.59 to known p38 inhibitor SB203580 as well as a docking score of -4.17 versus -3.86 to known ERK1/2 inhibitor AZD0364. Co-immunoprecipitation data reveals that CAPE treatment effectively downregulates heat shock protein (HSP) expression in both sera-supplemented and limited conditions through its interaction with mitogen-activated protein kinase 14 (MAPK14). These results suggest that stress induction via serum starvation in HT29 CRC cells leads to the induction of apoptosis and co-ordinated activation of MAPK-HSP pathways. Molecular docking studies support that CAPE could serve as an effective inhibitor to target p38 and MAPK compared to their currently known inhibitors.


Colonic Neoplasms , Phenylethyl Alcohol , Phenylethyl Alcohol/analogs & derivatives , Humans , Cell Line, Tumor , Heat-Shock Proteins , Molecular Docking Simulation , Apoptosis , Caffeic Acids/pharmacology , Caffeic Acids/metabolism , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/metabolism , Colonic Neoplasms/drug therapy
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1791-1801, 2024 03.
Article En | MEDLINE | ID: mdl-37740773

Gastric ulcer is one of the most frequent gastrointestinal ailments worldwide. Indomethacin, one of the most potent NSAIDs, suffers undesirable ulcerogenic activity. Caffeic acid phenethyl ester (CAPE) has known health benefits. The current study examined the potential of CAPE to combat indomethacin-induced gastric ulcers in rats. Animals were randomized into 5 groups: control, Indomethacin (50 mg/kg) mg/kg), Indomethacin + CAPE (5 mg/kg/day), Indomethacin + CAPE (10 mg/kg), and Indomethacin + Omeprazole (30 mg/kg). CAPE prevented the rise in ulcer index, attenuated histopathological changes and preserved gastric mucin concentration. CAPE efficiently significantly prevented accumulation of malondialdehude (MDA) and prevented exhaustion of the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Further, CAPE prevented the rise in the expression of tumor necrosis factor-α (TNF-α), cyclo-oxygenase-2 (COX-2) and nuclear factor kapp-B (NFκB). This was associated with down-regulation of Bax and up-regulation of Bcl-2 mRNA. Finally, CAPE prevented induced indomethacin-induced decrease in heat shock protein 70 (HSP70) in gastric tissues. In conclusion, CAPE possesses the ability to prevent indomethacin-induced gastric ulcer in rats. This involves, at least partially, antioxidation, anti-inflammation, anti-apoptosis and enhancement of HSP70 expression.


Indomethacin , Phenylethyl Alcohol/analogs & derivatives , Stomach Ulcer , Rats , Animals , Indomethacin/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Antioxidants/pharmacology , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use
15.
Phytother Res ; 38(1): 384-399, 2024 Jan.
Article En | MEDLINE | ID: mdl-37992723

Acute myocardial infarction (MI) is one of the leading causes of mortality around the world. Prunella vulgaris (Xia-Ku-Cao in Chinese) is used in traditional Chinese medicine practice for the treatment of cardiovascular diseases. However, its active ingredients and mechanisms of action on cardiac remodeling following MI remain unknown. In this study, we investigated the cardioprotective effect of P. vulgaris on MI rat models. MI rats were treated with aqueous extract of P. vulgaris or phenolic acids from P. vulgaris, including caffeic acid, ursolic acid or rosmarinic acid, 1 day after surgery and continued for the following 28 days. Then the cardioprotective effect, such as cardiac function, inflammatory status, and fibrosis areas were evaluated. RNA-sequencing (RNA-seq) analysis, real-time polymerase chain reaction (PCR), western blotting, and ELISA were used to explore the underlying mechanism. In addition, ultra-high performance liquid chromatography/mass spectrometer analysis was used to identify the chemicals from P. vulgaris. THP-1NLRP3-GFP cells were used to confirm the inhibitory effect of P. vulgaris and phenolic acids on the expression and activity of NLRP3. We found that P. vulgaris significantly improved cardiac function and reduced infarct size. Meanwhile, P. vulgaris protected cardiomyocyte against apoptosis, evidenced by increasing the expression of anti-apoptosis protein Bcl-2 in the heart and decreasing lactate dehydrogenase (LDH) levels in serum. Results from RNA-seq revealed that the therapeutic effect of P. vulgaris might relate to NLRP3-mediated inflammatory response. Results from real-time PCR and western blotting confirmed that P. vulgaris suppressed NLRP3 expression in MI heart. We also found that P. vulgaris suppressed NLRP3 expression and the secretion of HMGB1, IL-1ß, and IL-18 in THP-1NLRP3-GFP cells. Further studies indicated that the active components of P. vulgaris were three phenolic acids, those were caffeic acid, ursolic acid, and rosmarinic acid. These phenolic acids inhibited LPS-induced NLRP3 expression and activity in THP-1 cells, and improved cardiac function, suppressed inflammatory aggregation and fibrosis in MI rat models. In conclusion, our study demonstrated that P. vulgaris and phenolic acids from P. vulgaris, including caffeic acid, ursolic acid, and rosmarinic acid, could improve cardiac function and protect cardiomyocytes from ischemia injury during MI. The mechanism was partially related to inhibiting NLRP3 activation.


Myocardial Infarction , Prunella , Rats , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Prunella/metabolism , Ventricular Remodeling , Myocardial Infarction/drug therapy , Myocytes, Cardiac , Fibrosis , Caffeic Acids/pharmacology
16.
Radiother Oncol ; 190: 110021, 2024 Jan.
Article En | MEDLINE | ID: mdl-38000688

BACKGROUND AND PURPOSE: Lung cancers are highly resistant to radiotherapy, necessitating the use of high doses, which leads to radiation toxicities such as radiation pneumonitis and fibrosis. Caffeic Acid Phenethyl Ester (CAPE) has been suggested to have anti-proliferative and pro-apoptotic effects in tumour cells, while radioprotective anti-inflammatory and anti-oxidant effects in the normal tissue. We investigated the radiosensitizing and radioprotective effects of CAPE in lung cancer cell lines and normal tissue in vitro and ex vivo, respectively. MATERIALS AND METHODS: The cytotoxic and radiosensitizing effects of CAPE in lung cancer were investigated using viability and clonogenic survival assays. The radioprotective effects of CAPE were assessed in vitro and ex vivo using precision cut lung slices (PCLS). Potential underlying molecular mechanisms of CAPE focusing on cell cycle, cell metabolism, mitochondrial function and pro-inflammatory markers were investigated. RESULTS: Treatment with CAPE decreased cell viability in a dose-dependent manner (IC50 57.6 ± 16.6 µM). Clonogenic survival assays showed significant radiosensitization by CAPE in lung adenocarcinoma lines (p < 0.05), while no differences were found in non-adenocarcinoma lines (p ≥ 0.13). Cell cycle analysis showed an increased S-phase (p < 0.05) after incubation with CAPE in the majority of cell lines. Metabolic profiling showed that CAPE shifted cellular respiration towards glycolysis (p < 0.01), together with mitochondrial membrane depolarization (p < 0.01). CAPE induced a decrease in NF-κB activity in adenocarcinomas and decreased pro-inflammatory gene expression in PCLS. CONCLUSION: The combination of CAPE and radiotherapy may be a potentially effective approach to increase the therapeutic window in lung cancer patients.


Adenocarcinoma of Lung , Adenocarcinoma , Antineoplastic Agents , Lung Neoplasms , Phenylethyl Alcohol/analogs & derivatives , Humans , Polyphenols , Adenocarcinoma of Lung/radiotherapy , Antineoplastic Agents/pharmacology , Caffeic Acids/pharmacology , Lung Neoplasms/radiotherapy , Lung Neoplasms/pathology , Adenocarcinoma/radiotherapy , Cell Line, Tumor
17.
Cell Biochem Funct ; 42(1): e3900, 2024 Jan.
Article En | MEDLINE | ID: mdl-38111127

The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 µg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 µg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 µg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.


Melanoma , Phenylethyl Alcohol , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/pathology , Cell Line, Tumor , Liposomes , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Skin Neoplasms/pathology , Caffeic Acids/pharmacology , Caffeic Acids/chemistry , Caffeic Acids/therapeutic use , Apoptosis , Phosphatidylinositol 3-Kinases/metabolism
18.
Oncol Rep ; 51(2)2024 02.
Article En | MEDLINE | ID: mdl-38099422

Hypopharyngeal squamous cell carcinoma (HSCC) is a relatively rare form of head and neck cancer that is notorious for its poor prognosis and low overall survival rate. This highlights the need for new therapeutic options for this malignancy. The objective of the present study was to examine the ability of caffeic acid phenethyl ester (CAPE), which is an active compound found in propolis, to combat HSCC tumor growth. CAPE exerted its tumor­suppressive activity in HSCC cell lines through the induction of apoptosis. Mechanistically, the CAPE­mediated apoptotic process was attributed to the perturbation of the mitochondrial membrane potential and the activation of caspase­9. CAPE also modulated survivin and X­linked inhibitor of apoptosis, which are potent members of the inhibitors of apoptosis protein family, either through transcriptional or post­translational regulation, leading to HSCC cell line death. Therefore, the findings of the present study suggested that CAPE is an effective treatment alternative for HSCC via the stimulation of mitochondria­dependent apoptosis.


Head and Neck Neoplasms , Phenylethyl Alcohol , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cell Line, Tumor , Phenylethyl Alcohol/pharmacology , Phenylethyl Alcohol/therapeutic use , Apoptosis , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Head and Neck Neoplasms/drug therapy
19.
Med Mycol ; 61(11)2023 Nov 06.
Article En | MEDLINE | ID: mdl-37947257

Ethyl caffeate (EC) is a phenylpropanoid compound derived from Elephantopus scaber. In our previous work, EC was investigated to have a strong synergistic antifungal effect against azole-resistant strains of Candida albicans when combined with fluconazole (FLU). However, the protective effect and mechanism of EC + FLU on oropharyngeal candidiasis (OPC) caused by drug-resistant strains of C. albicans have not been investigated. This study aimed to investigate the protective effect and mechanism of EC combined with FLU against C. albicans-resistant strains that lead to OPC. An OPC mouse model revealed that EC + FLU treatment reduced fungal load and massive hyphal invasion of tongue tissues, and ameliorated the integrity of the tongue mucosa. Periodic acid-Schiff staining results showed more structural integrity of the tongue tissues and reduced inflammatory cell infiltration after EC + FLU treatment. Phosphorylation of EGFR (epidermal growth factor receptor) and other proteins in the EFGR/JNK (c-Jun N-terminal kinase)/c-JUN (transcription factor Jun) signaling pathway was significantly downregulated by EC + FLU. EGFR and S100A9 mRNA expression were also reduced. The above results were verified in FaDu cells. ELISA results showed that the concentration of inflammatory factors in the cell supernatant was significantly reduced after EC combined with FLU treatment. Molecular docking revealed that EC exhibited high binding energy to EGFR. In conclusion, EC enhances the susceptibility of azole-resistant C. albicans to FLU, and the underlying mechanism is related to the inhibition of the EGFR/JNK/c-JUN signaling pathway. This result suggests that EC has potential to be developed as an antifungal sensitizer to treat OPC caused by azole-resistant C. albicans.


Antifungal Agents , Caffeic Acids , Candidiasis, Oral , Drug Resistance, Fungal , Fluconazole , Animals , Mice , Antifungal Agents/pharmacology , Azoles/pharmacology , Candida albicans , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , ErbB Receptors/pharmacology , Fluconazole/pharmacology , Microbial Sensitivity Tests/veterinary , Molecular Docking Simulation , Signal Transduction , Caffeic Acids/pharmacology
20.
Iran J Med Sci ; 48(5): 493-500, 2023 09.
Article En | MEDLINE | ID: mdl-37786469

Background: Tobacco smoke contains various toxins that negatively affect the human reproductive system. Caffeic acid phenethyl ester (CAPE), a potent antioxidant, has protective effects on the reproductive system against oxygen-free radicals, methotrexate, and pesticides. Herein, the effect of CAPE on some key markers of endometrial receptivity has been evaluated. Methods: A cross-sectional study was conducted during 2018-2019 in the Department of Clinical Biochemistry, School of Medicine, Fasa University of Medical Sciences (Fasa, Iran). Primary endometrial cells were divided into five groups, namely control, nicotine, CAPE, vehicle, and nicotine+CAPE. Real-time polymerase chain reaction (PCR) and methylation-specific PCR were performed to evaluate gene expressions and methylation, respectively. Appropriate doses of CAPE and nicotine were determined using the MTT assay. Data were analyzed using SPSS software (version 16.0) with a one-way analysis of variance. P<0.01 was considered statistically significant. The fold change was calculated using the 2-∆ΔCT method. Results: Treatment of cells with nicotine significantly reduced the expression of C-X-C motif chemokine ligand 12 (CXCL12), fibroblast growth factor 2 (FGF2), and vascular endothelial growth factor A (VEGF-A) genes (P<0.0001). However, the expression levels increased significantly when treated with nicotine+CAPE (P<0.0001). Despite the reduced CXCL12 gene expression in cells treated with nicotine, CXCL12 was unmethylated in all study groups, indicating that the methylation status of the CXCL12 gene was not affected by nicotine or CAPE. Conclusion: CAPE can be a suitable agent to protect female smokers from the harmful effects of nicotine. This manuscript is available as a preprint on the Research Gate website.


Nicotine , Vascular Endothelial Growth Factor A , Female , Humans , Nicotine/adverse effects , Nicotine/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Cross-Sectional Studies , Endometrium/metabolism , Caffeic Acids/pharmacology , Caffeic Acids/therapeutic use , Caffeic Acids/metabolism
...